The Effect of Starter Culture on Increasing Food Safety and Its Impact on Customer Preference

Authors

  • Hillary Ellen Yapradinata Food Technology Program, Universitas Ciputra, Indonesia
  • Alvin Chandra Wijaya Food Technology Program, Universitas Ciputra, Indonesia
  • Tuhfah Wikaputra Food Technology Program, Universitas Ciputra, Indonesia
  • Masdiana Cendrakasih Padaga Food Technology Program, Universitas Ciputra, Indonesia
  • Oki Krisbianto Food Technology Program, Universitas Ciputra, Indonesia

Keywords:

Aron, Enterobacteriaceae, fermentation, lactic acid bacteria, sensory characteristic

Abstract

Aron is a fermented white corn, a traditional product of the Tengger tribe, which is susceptible to contamination by pathogenic microorganisms during its production process. The addition of starter cultures obtained from the isolation of dominant lactic acid bacteria in the natural fermentation of white corn, namely Lactobacillus and Streptococcus, was expected to inhibit the growth of pathogenic microorganisms. The aim of this study was to evaluate the ability of different concentrations of starter culture, starting from 0%, 10%, 20%, and 30% to inhibit the growth of pathogenic microorganisms, under different fermentation conditions, which are traditional fermentation at a cold temperature around 13-18°C in Tengger and controlled fermentation at 28-32°C in a laboratory in Surabaya for 6 days, with analysis done on days 0, 3, and 6. Differences in sensory characteristics of aron with the addition of starter cultures, including aroma, taste, and color, were also evaluated. The indicator used to measure the growth of pathogenic microorganisms was Enterobacteriaceae, which quantity was analyzed to evaluate the inhibition of its growth by lactic acid bacteria under both conditions. Biochemical analyses such as TSIA test, catalase test, and motility test were performed to ensure that the dominant bacteria at the end of fermentation were lactic acid bacteria. Additionally, molds that grew during fermentation in both conditions were identified. Sensory analysis was done at the end of fermentation, including aroma, taste, and colour tests, which supported by Whiteness Index, DE2000, and Chroma analyses to evaluate the impact of starter culture and environmental conditions on the resulting aron. The addition of starter cultures was shown to affect the inhibition of Enterobacteriaceae growth under both conditions. Biochemical tests serve as supporting evidence that the dominant bacteria under both conditions after 6 days of fermentation were lactic acid bacteria. Aroma was identified as an attribute likely influenced by the addition of starter culture and environmental differences, caused by the compounds produced during fermentation. It was concluded that the addition of starter culture and environmental differences affect the microbiological characteristics and aroma of aron.

Downloads

Download data is not yet available.

References

Adebo, J. A., Njobeh, P. B., Gbashi, S., Oyedeji, A. B., Ogundele, O. M., Oyeyinka, S. A., & Adebo, O. A. (2022). Fermentation of Cereals and Legumes: Impact on Nutritional Constituents and Nutrient Bioavailability. Fermentation, 8(2), 63. https://doi.org/10.3390/fermentation8020063

Carvalho, J. de O., & Orlanda, J. F. F. (2017). Heat Stability and Effect of pH on Enzyme Activity of Polyphenol Oxidase in Buriti (Mauritia flexuosa Linnaeus f.) Fruit Extract. Food Chemistry, 233, 159–163. https://doi.org/10.1016/j.foodchem.2017.04.101

Dewi, A. P., & Darmadi. (2024). Identifikasi Bakteri Patogen Mesoflilik Pada Sumber Air Bersih di Jalan Riau Ujung Kota Pekanbaru. Jurnal Farmasi, 2(2), 34–42.

Gallo, M., Ferrara, L., Calogero, A., Montesano, D., & Naviglio, D. (2020). Relationships Between Food and Diseases: What to Know to Ensure Food Safety. Food Research International, 137, 109414. https://doi.org/10.1016/j.foodres.2020.109414

Guan, T., Lin, Y., Chen, K., Ou, M., & Zhang, J. (2020). Physicochemical Factors Affecting Microbiota Dynamics During Traditional Solid-State Fermentation of Chinese Strong-Flavor Baijiu. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.02090

Guittin, C., Maçna, F., Picou, C., Perez, M., Barreau, A., Poitou, X., Sablayrolles, J.-M., Mouret, J.-R., & Farines, V. (2023). New Online Monitoring Approaches to Describe and Understand the Kinetics of Acetaldehyde Concentration during Wine Alcoholic Fermentation: Access to Production Balances. Fermentation, 9(3), 299. https://doi.org/10.3390/fermentation9030299

He, Z., Zhang, H., Wang, T., Wang, R., & Luo, X. (2022). Effects of Five Different Lactic Acid Bacteria on Bioactive Components and Volatile Compounds of Oat. Foods, 11(20), 3230. https://doi.org/10.3390/foods11203230

Kos, J., Janić-Hajnal, E., Malachová, A., Krska, R., & Sulyok, M. (2022). The Natural Occurrence of Penicillium spp. Metabolites in Maize Kernels Originating from Serbia. Food and Feed Research, 49(2), 195–207. https://doi.org/10.5937/ffr49-39606

Krisbianto, O., Putra, A. Y. T., Padaga, M. C., & Minantyo, H. (2024). Comparative Microbiological, Chemical, and Sensory Traits of Aron Fermentation in Tengger and Laboratory Scales. Agrointek, 18(3), 581–592. https://doi.org/10.21107/agrointek.v18i3.22236

Liang, C., Liu, L.-X., Liu, J., Aihaiti, A., Tang, X.-J., & Liu, Y.-G. (2023). New Insights on Low-Temperature Fermentation for Food. Fermentation, 9(5), 477. https://doi.org/10.3390/fermentation9050477

Liszkowska, W., & Berlowska, J. (2021). Yeast Fermentation at Low Temperatures: Adaptation to Changing Environmental Conditions and Formation of Volatile Compounds. Molecules, 26(4), 1035. https://doi.org/10.3390/molecules26041035

Mokoena, M. P., Omatola, C. A., & Olaniran, A. O. (2021). Applications of Lactic Acid Bacteria and Their Bacteriocins against Food Spoilage Microorganisms and Foodborne Pathogens. Molecules, 26(22), 7055. https://doi.org/10.3390/molecules26227055

Nofrida, R., Warsiki, E., & Yuliasih, I. (2013). Pengaruh Suhu Penyimpanan Terhadap Perubahan Warna Label Ccerdas Indikator Warna dari Daun Erpa (Aerva sanguinolenta). Jurnal Teknologi Industri Pertanian, 23(3).

Ogodo, A. C., Agwaranze, D. I., Opara, J. I., & Iheanacho, C. C. (2023). Functional Properties of Bambara Groundnut Flour Fermented with Lactic Acid Bacteria Consortium. ASIAN J TROP BIOTECHNOL, 20(2), 79–84. https://doi.org/10.13057/biotek/c200206

Rahmawati, I., Firsta, N. C., Purwandhani, S. N., & Suladra, M. (2022). Enkapsulasi Lactobacillus acidophilus SNP 2 Menggunakan Alginat dan Susu Skim Metode Emulsi Serta Pengaruhnya Terhadap Viabilitas Sel Pada Berbagai Suhu dan pH. AGROTECH: Jurnal Ilmiah Teknologi Pertanian, 4(2), 28–35. https://doi.org/10.37631/agrotech.v1i1

Ramesh, C., Prasastha, V. R., Venkatachalam, M., & Dufossé, L. (2022). Natural Substrates and Culture Conditions to Produce Pigments from Potential Microbes in Submerged Fermentation. Fermentation, 8(9), 460. https://doi.org/10.3390/fermentation8090460

Rawoof, S. A. A., Kumar, P. S., Vo, D.-V. N., Devaraj, K., Mani, Y., Devaraj, T., & Subramanian, S. (2021). Production of Optically Pure Lactic Acid by Microbial Fermentation: A Review. Environmental Chemistry Letters, 19(1), 539–556. https://doi.org/10.1007/s10311-020-01083-w

Risna, Y. K., Sri-Harimurti, S.-H., Wihandoyo, W., & Widodo, W. (2022). Kurva Pertumbuhan Isolat Bakteri Asam Laktat dari Saluran Pencernaan Itik Lokal Asal Aceh. Jurnal Peternakan Indonesia (Indonesian Journal of Animal Science), 24(1), 1. https://doi.org/10.25077/jpi.24.1.1-7.2022

Sari, N. I., Leksono, T., & Yuliana, C. H. (2023). Isolasi dan Identifikasi Bakteri Asam Laktat pada Bekasam Ikan Nila (Orechromis niloticus) dengan Penambahan Dadih. Agrointek : Jurnal Teknologi Industri Pertanian, 17(4), 854–865. https://doi.org/10.21107/agrointek.v17i4.16669

Saunin, Q. A., Muthiáh, S. N., & Perdana, A. T. (2024). Characterization of Lactic Acid Bacteria (LAB) from Tempeh Probiotic Drink with Combination of Dates and Skim Milk. Konservasi Hayati, 20(1), 11–21.

Sharma, R., Garg, P., Kumar, P., Bhatia, S. K., & Kulshrestha, S. (2020). Microbial Fermentation and Its Role in Quality Improvement of Fermented Foods. Fermentation, 6(4), 106. https://doi.org/10.3390/fermentation6040106

Shi, C., & Maktabdar, M. (2021). Lactic Acid Bacteria as Biopreservation Against Spoilage Molds in Dairy Products – A Review. Frontiers in Microbiology, 12. https://doi.org/10.3389/fmicb.2021.819684

Skowron, K., Budzyńska, A., Grudlewska-Buda, K., Wiktorczyk-Kapischke, N., Andrzejewska, M., Wałecka-Zacharska, E., & Gospodarek-Komkowska, E. (2022). Two Faces of Fermented Foods—The Benefits and Threats of Its Consumption. Frontiers in Microbiology, 13, 1–17. https://doi.org/10.3389/fmicb.2022.845166

Son, M. S., & Taylor, R. K. (2021). Growth and Maintenance of Escherichia coli Laboratory Strains. Current Protocols, 1(1), 1–13. https://doi.org/10.1002/cpz1.20

Sorbara, M. T., Dubin, K., Littmann, E. R., Moody, T. U., Fontana, E., Seok, R., Leiner, I. M., Taur, Y., Peled, J. U., van den Brink, M. R. M., Litvak, Y., Bäumler, A. J., Chaubard, J.-L., Pickard, A. J., Cross, J. R., & Pamer, E. G. (2019). Inhibiting Antibiotic-Resistant Enterobacteriaceae by Microbiota-Mediated Intracellular Acidification. Journal of Experimental Medicine, 216(1), 84–98. https://doi.org/10.1084/jem.20181639

Wang, S., Tamura, T., Kyouno, N., Liu, X., Zhang, H., Akiyama, Y., & Chen, J. Y. (2019). Effect of Volatile Compounds on the Quality of Japanese Fermented Soy Sauce. LWT, 111, 594–601. https://doi.org/10.1016/j.lwt.2019.05.050

Yonathan, C. J., Ristam, Y. P. G., Wijaya, V. A., & Krisbianto, O. (2021). Focus Group Discussion and Quantitative Sensory Analysis to Identify Sensory Parameters of New Food Product. Journal of Tourism, Culinary, and Entrepreneurship (JTCE), 1(1), 61–78. https://doi.org/10.37715/jtce.v1i1.1800

Zapaśnik, A., Sokołowska, B., & Bryła, M. (2022). Role of Lactic Acid Bacteria in Food Preservation and Safety. Foods, 11(9), 1283. https://doi.org/10.3390/foods11091283

Published

2025-04-14

Issue

Section

Articles