Transformasi Mineral Klei pada Pertanian Intensif: Implikasi terhadap Kesuburan Tanah dan Keberlanjutan

Authors

  • R. Ayu Chairunnisya Program Studi Ilmu Tanah, Fakultas Pertanian, Universitas Syiah Kuala, Indonesia
  • Retno L Lubis Program Studi Ilmu Tanah, Fakultas Pertanian, Universitas Syiah Kuala, Indonesia
  • Yaumil Khairiyah Program Studi Ilmu Tanah, Fakultas Pertanian, Universitas Syiah Kuala, Indonesia
  • Khairun Purgawa Program Studi Ilmu Tanah, Fakultas Pertanian, Universitas Syiah Kuala, Indonesia
  • Retno Purnama Sari Program Studi Ilmu Tanah, Fakultas Pertanian, Universitas Jember, Indonesia

DOI:

https://doi.org/10.19184/bip.v8i1.53699

Keywords:

Intensifikasi pertanian, keberlanjutan, mineral klei, transformasi klei

Abstract

Transformasi mineral klei dalam tanah akibat intensifikasi pertanian memiliki dampak signifikan
terhadap kesuburan tanah dan keberlanjutan sistem pertanian. Artikel review ini mengkaji dinamika
transformasi mineral klei yang dipicu oleh praktik seperti pemupukan kimia, irigasi berlebih, dan
pengolahan tanah intensif. Transformasi ini memengaruhi kapasitas tukar kation, retensi hara, dan
stabilitas agregat tanah, dengan implikasi jangka panjang terhadap produktivitas dan kesehatan tanah.
Kajian literatur dilakukan dengan meninjau publikasi dalam lima tahun terakhir yang berkaitan dengan
kata kunci "transformasi mineral klei," "evolusi klei pada tanah," dan "pengelolaan tanah pertanian
berkelanjutan." Sumber yang dipilih berasal dari basis data ilmiah terkemuka dan mencakup studi yang
secara representatif menggambarkan transformasi mineral klei dalam sistem tanah pertanian serta
dampaknya terhadap sifat tanah. Hasil kajian menunjukkan bahwa interaksi antara mineral klei, bahan
organik, dan mikroorganisme dapat mempercepat transformasi mineral, tetapi juga membuka peluang
untuk pengelolaan adaptif yang meningkatkan fungsi tanah. Oleh karena itu, strategi pertanian
berkelanjutan berbasis bukti, seperti penggunaan biochar dan pertanian presisi, direkomendasikan
untuk memitigasi dampak negatif transformasi mineral klei dan mendukung keberlanjutan tanah.

Downloads

Download data is not yet available.

References

Akinbodunse, S. J., Ufer, K., Dohrmann, R., & Mikutta, C. 2024. Evaluation of the Rietveld method for

determining content and chemical composition of inorganic X-ray amorphous materials in soils.

American Mineralogist, 109(12), 2037–2051. https://doi.org/10.2138/am-2023-9240

Austin, J. C., Perry, A., Richter, D. D., & Schroeder, P. A. 2018. Modifications of 2:1 Clay Minerals in a

Kaolinite-Dominated Ultisol under Changing Land-Use Regimes. Clays and Clay Minerals, 66(1), 61–

73. https://doi.org/10.1346/CCMN.2017.064085

Benavides, P. A. D., & Guggenheim, S. 2024. Effect of Layer Charge Density and Charge Location on the

Swelling of Smectite: Implications for Geological Storage of CO2 and High-Level Nuclear Wastes.

American Mineralogist. https://doi.org/10.2138/am-2024-9557

Bezboruah, M., Sharma, S. K., Laxman, T., Ramesh, S., Sampathkumar, T., Gulaiya, S., Malathi, G., &

Krishnaveni, S. A. 2024. Conservation Tillage Practices and Their Role in Sustainable Farming

Systems. Journal of Experimental Agriculture International, 46(9), 946–959.

https://doi.org/10.9734/jeai/2024/v46i92892

Chen, M., Zhang, S., Liu, L., & Ding, X. 2023. Influence of organic fertilization on clay mineral transformation

and soil phosphorous retention: Evidence from an 8-year fertilization experiment. Soil and Tillage

Research, 230, 105702. https://doi.org/10.1016/j.still.2023.105702

Das, D., Sahoo, J., Raza, M. B., Barman, M., & Das, R. 2022. Ongoing soil potassium depletion under intensive

cropping in India and probable mitigation strategies. A review. Agronomy for Sustainable

Development, 42(1), 4. https://doi.org/10.1007/s13593-021-00728-6

Datta, S., Ghosh, S., & Das, D. 2020. Soil Mineralogy and Clay Minerals. In The Soils of India (pp. 131–149).

Springer International Publishing. https://doi.org/10.1007/978-3-030-31082-0

Elhassan, A. A. M., Mnzool, M., Smaoui, H., Jendoubi, A., Elnaim, B. M. E., & Faihan Alotaibi, M. 2023. Effect

of clay mineral content on soil strength parameters. Alexandria Engineering Journal, 63, 475–485.

https://doi.org/10.1016/j.aej.2022.08.012

Fernandez-Marcos, M. L., Macías, F., & Guitián-Ojea, F. 1979. A contribution to the study of the stability of

clay minerals from the soil solution composition at different pF values. Clay Minerals, 14(1), 29–37.

https://doi.org/10.1180/claymin.1979.014.1.04

Firmano, R. F., Melo, V. F., Montes, C. R., De Oliveira, A., De Castro, C., & Alleoni, L. R. F. 2020. Potassium

Reserves in the Clay Fraction of a Tropical Soil Fertilized for Three Decades. Clays and Clay Minerals,

68(3), 237–249. https://doi.org/10.1007/s42860-020-00078-6

Futa, B., Gmitrowicz-Iwan, J., Skersienė, A., Šlepetienė, A., & Parašotas, I. 2024. Innovative Soil Management

Strategies for Sustainable Agriculture. Sustainability, 16(21), 9481.

https://doi.org/10.3390/su16219481

Gao, Y., Gao, Y., Ibarra, D. E., Du, X., Dong, T., Liu, Z., & Wang, C. 2021. Clay mineralogical evidence for mid-

latitude terrestrial climate change from the latest Cretaceous through the earliest Paleogene in the

Songliao Basin, NE China. Cretaceous Research, 124, 104827.

https://doi.org/10.1016/j.cretres.2021.104827

Günal, H., & Acir, N. 2024. Spatial variability of clay minerals in a semi-arid region of Turkiye. GeodermaRegional, 38, e00820. https://doi.org/10.1016/j.geodrs.2024.e00820

Gverić, Z., Rubinić, V., Kampić, Š., Vrbanec, P., Paradžik, A., & Tomašić, N. 2022. Clay mineralogy of soils

developed from Miocene marls of Medvednica Mt., NW Croatia: Origin and transformation in

temperate climate. CATENA, 216, 106439. https://doi.org/10.1016/j.catena.2022.106439

H. Esaa, F., & Kassim, J. K. 2021. Identification and distribution of minerals in soils from al-Ahrar area, Waist

province, Iraq. Journal of Life Science and Applied Research, 2(1), 16–23.

https://doi.org/10.59807/jlsar.v2i1.26

Ható, Z., Makó, É., & Kristóf, T. 2013. Molecular simulation study of kaolinite intercalation. 41, 2013.

Herrero, J., Jiménez-Ballesta, R., & Castañeda, C. 2024. The Clay Minerals in the Soils of the Gypseous Belt

of Barbastro, NE Spain. Land, 13(9), 1415. https://doi.org/10.3390/land13091415

Hong, H., Ji, K., Hei, H., Wang, C., Liu, C., Zhao, L., Lanson, B., Zhao, C., Fang, Q., & Algeo, T. J. 2023. Clay

mineral evolution and formation of intermediate phases during pedogenesis on picrite basalt bedrock

under temperate conditions (Yunnan, southwestern China). CATENA, 220, 106677.

https://doi.org/10.1016/j.catena.2022.106677

Huang, P. M. 2010. Impacts of Mineral Colloids on the Transformation of Biomolecules and Physical and

Chemical Protection of Soil Organic Carbon. In J. Xu & P. M. Huang (Eds.), Molecular Environmental

Soil Science at the Interfaces in the Earth’s Critical Zone (pp. 13–16). Springer Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-05297-2_4

Ibarra, D. E., & Evaristo, J. 2024. Soil pore water evaporation and temperature influences on clay mineral

paleothermometry. Communications Earth & Environment, 5(1), 21. https://doi.org/10.1038/s43247-

024-01201-4

Karathanasis, A. D., & Hajek, B. F. 1983. Transformation of Smectite to Kaolinite in Naturally Acid Soil

Systems: Structural and Thermodynamic Considerations. Soil Science Society of America Journal,

47(1), 158–163. https://doi.org/10.2136/sssaj1983.03615995004700010031x

Keller, C., Rizwan, M., & Meunier, J.-D. 2021. Are Clay Minerals a Significant Source of Si for Crops? A

Comparison of Amorphous Silica and the Roles of the Mineral Type and pH. Silicon, 13(10), 3611–

3618. https://doi.org/10.1007/s12633-020-00877-5

Kome, G. K., Enang, R. K., Tabi, F. O., & Yerima, B. P. K. 2019. Influence of Clay Minerals on Some Soil

Fertility Attributes: A Review. Open Journal of Soil Science, 09(09), 155–188.

https://doi.org/10.4236/ojss.2019.99010

Li, H., Hu, Z., Wan, Q., Mu, B., Li, G., & Yang, Y. 2022. Integrated Application of Inorganic and Organic

Fertilizer Enhances Soil Organo-Mineral Associations and Nutrients in Tea Garden Soil. Agronomy,

12(6), 1330. https://doi.org/10.3390/agronomy12061330

Li, S., Chen, S., Bai, S., Tan, J., & Jiang, X. 2024. Intensive agricultural management-induced subsurface

accumulation of water-extractable colloidal P in a Vertisol. SOIL, 10(1), 49–59.

https://doi.org/10.5194/soil-10-49-2024

Li, S., He, H., Tao, Q., Zhu, J., Tan, W., Ji, S., Yang, Y., & Zhang, C. 2020. Kaolinization of 2:1 type clay

minerals with different swelling properties. American Mineralogist, 105(5), 687–696.

https://doi.org/10.2138/am-2020-7339

Liao, Q., Gu, H., Qi, C., Chao, J., Zuo, W., Liu, J., Chen, T., & Zhang, L. 2024. Mapping global distributions of

clay-size minerals via soil properties and machine learning techniques. Science of The Total

Environment, 949, 174776. https://doi.org/10.1016/j.scitotenv.2024.174776

Lin, Y., Wang, J., & Lin, C. 2021. Response of toxic metal distributions and sources to anthropogenic activities

and pedogenic processes in the Albic Luvisol profile of northeastern China. Environmental Advances,

6, 100142. https://doi.org/10.1016/j.envadv.2021.100142

Liu, Y.-L., Yao, S.-H., Han, X.-Z., Zhang, B., & Banwart, S. A. 2017. Soil Mineralogy Changes With Different

Agricultural Practices During 8-Year Soil Development From the Parent Material of a Mollisol. In

Advances in Agronomy (Vol. 142, pp. 143–179). Elsevier. https://doi.org/10.1016/bs.agron.2016.10.015

Lybrand, R. A., & Rasmussen, C. 2018. Climate, topography, and dust influences on the mineral and

geochemical evolution of granitic soils in southern Arizona. Geoderma, 314, 245–261.

https://doi.org/10.1016/j.geoderma.2017.10.042

Majid, A. 2023. Paleo–climatic and paleo–environment implication of clay mineral across Upper Cretaceous-–

Lower Eocene deposits from Gafsa Basin. https://doi.org/10.21203/rs.3.rs-1623282/v2

Manjaiah, K. M., Mukhopadhyay, R., Paul, R., Datta, S. C., Kumararaja, P., & Sarkar, B. 2019. Clay minerals

and zeolites for environmentally sustainable agriculture. In Modified Clay and Zeolite Nanocomposite

Materials (pp. 309–329). Elsevier. https://doi.org/10.1016/B978-0-12-814617-0.00008-6

Maphuhla, N. G., & Oyedeji, O. O. 2024. Effects of Clay Minerals on Enzyme Activity as a Potential Biosensor

of Soil Pollution in Alice Township. Waste, 2(1), 85–101. https://doi.org/10.3390/waste2010005

Mavris, C., Plötze, M., Mirabella, A., Giaccai, D., Valboa, G., & Egli, M. 2011. Clay mineral evolution along a

soil chronosequence in an Alpine proglacial area. Geoderma, 165(1), 106–117.

https://doi.org/10.1016/j.geoderma.2011.07.010

Mejri, C., Oueslati, W., & Amara, A. B. H. 2022. Structural Alteration, Hydration Stability, Heavy Metal

Removal Efficiency, and Montmorillonite Porosity Fate by Coupling the Soil Solution pH and a

Thermal Gradient. Adsorption Science & Technology, 2022, 4421932.

https://doi.org/10.1155/2022/4421932

Mishra, G., Sulieman, M. M., Kaya, F., Francaviglia, R., Keshavarzi, A., Bakhshandeh, E., Loum, M., Jangir,

A., Ahmed, I., Elmobarak, A., Basher, A., & Rawat, D. 2022. Machine learning for cation exchange

capacity prediction in different land uses. CATENA, 216, 106404.

https://doi.org/10.1016/j.catena.2022.106404

Musa, I. O., Samuel, J. O., Adams, M., Abdulsalam, M., Nathaniel, V., Maude, Asmau M., Adedayo, O. A., &

Tiamiyu, A. T. 2024. Soil Erosion, Mineral Depletion and Regeneration. In Soil Erosion, Mineral

Depletion and Regeneration (pp. 159–172). Springer, Cham.

Nortjé, G. P., & Laker, M. C. 2021. Factors That Determine the Sorption of Mineral Elements in Soils and

Their Impact on Soil and Water Pollution. Minerals, 11(8), 821. https://doi.org/10.3390/min11080821

Ouyang, N., Zhang, Y., Sheng, H., Zhou, Q., Huang, Y., & Yu, Z. 2021. Clay mineral composition of upland soils

and its implication for pedogenesis and soil taxonomy in subtropical China. Scientific Reports, 11(1),

9707. https://doi.org/10.1038/s41598-021-89049-y

Pal, A., Garia, S., & Nair, A. M. 2022. Effect of Clay Mineralogy on Hill Slope Weathering. EGU22-9879.

https://doi.org/10.5194/egusphere-egu22-9879, 2022.

Pathak, H., Chatterjee, D., Saha, S., & Das, B. (Eds.). 2024. Climate Change Impacts on Soil-Plant-Atmosphere

Continuum (Vol. 78). Springer Nature Singapore. https://doi.org/10.1007/978-981-99-7935-6

Pineau, M., Mathian, M., Baron, F., Rondeau, B., Le Deit, L., Allard, T., & Mangold, N. 2022. Estimating

kaolinite crystallinity using near-infrared spectroscopy: Implications for its geology on Earth and

Mars. American Mineralogist, 107(8), 1453–1469. https://doi.org/10.2138/am-2022-8025

Punia, A., & Siddaiah, N. S. 2019. Impact of mines and thar desert on the distribution of major oxides in the

soils of khetri copper mine region. Journal of Applied Geochemistry, 21(2), 269–275.

Rafique, M. I., Ahmad, J., Usama, M., Ahmad, M., Al-Swadi, H. A., Al-Farraj, A. S. F., & Al-Wabel, M. I. 2023.

Clay-Biochar Composites: Emerging Applications in Soil. In Clay Composites. Advances in Material

Research and Technology. Springer.

Razum, I., Pavlaković, S. M., Rubinić, V., & Durn, G. 2024. New soil weathering index based on compositional

data analyses of silt to sand sized parent mineral assemblages of terra rossa soils. Journal of

Geochemical Exploration, 263, 107213. https://doi.org/10.1016/j.gexplo.2024.107513

Ren, J., Zheng, C., Yong, Y., Lin, Z., Zhu, A., He, C., & Pan, H. 2023. Effect and mechanism of kaolinite loading

amorphous zero-valent iron to stabilize cadmium in soil. Science of The Total Environment, 904,

166319. https://doi.org/10.1016/j.scitotenv.2023.166319

Sandler, A., Fine, P., & Bar-Tal, A. 2023. The Effect of K-Fertilization and Irrigation on the Composition of

Cultivated Soils: Examples from Israel. Minerals, 13(12), 1547. https://doi.org/10.3390/min13121547

Schaller, J., Frei, S., Rohn, L., & Gilfedder, B. S. 2020. Amorphous Silica Controls Water Storage Capacity and

Phosphorus Mobility in Soils. Frontiers in Environmental Science, 8, 94.

https://doi.org/10.3389/fenvs.2020.00094

Shahrokh, V., Khademi, H., & Zeraatpisheh, M. 2023. Mapping clay mineral types using easily accessible data

and machine learning techniques in a scarce data region: A case study in a semi-arid area in Iran.

CATENA, 223, 106932. https://doi.org/10.1016/j.catena.2023.106932

Soltaninejad, S., Marandi, S. M., & B.P., N. 2023. Effects of the Types and Amounts of Clay Minerals on

Durability of Lime-Stabilized Clay Soils. Minerals, 13(10), 1317. https://doi.org/10.3390/min13101317

Song, X., Jin, J., Li, H., Wang, F., Liu, J., Wang, X., Huang, X., Chai, C., Song, N., & Zong, H. 2023. Kaolinite

reduced Cd accumulation in peanut and remediate soil contaminated with both microplastics and

cadmium. Ecotoxicology and Environmental Safety, 266, 115580.

https://doi.org/10.1016/j.ecoenv.2023.115580

Sousa, M. G., Araujo, J. K. S., Ferreira, T. O., Andrade, G. R. P., Araújo Filho, J. C., Fracetto, G. G. M., Santos,

J. C. B., Fracetto, F. J. C., Lima, G. K., & Souza Junior, V. 2021. Long-term effects of irrigated

agriculture on Luvisol pedogenesis in semi-arid region, northeastern Brazil. CATENA, 206, 105529.

https://doi.org/10.1016/j.catena.2021.105529

Tao, F., & Houlton, B. Z. 2024. Inorganic and organic synergies in enhanced weathering to promote carbon

dioxide removal. Global Change Biology, 30(1), e17132. https://doi.org/10.1111/gcb.17132

Tao, L., Wen, X., Li, H., Huang, C., Jiang, Y., Liu, D., & Sun, B. 2021. Influence of manure fertilization on soil

phosphorous retention and clay mineral transformation: Evidence from a 16-year long-term

fertilization experiment. Applied Clay Science, 204, 106021. https://doi.org/10.1016/j.clay.2021.106021

Thorpe, M., Rahman, Z., Tu, V., Longstaffe, F. J., & Osinski, G. R. (2022, March 7). TEM and XRD Investigation

of Impact Glass Alteration Products: Amorphous Materials, Phyllosilicates and Everything in Between.

53rd Lunar and Planetary Science Conference, The Woodlands, Texas.

Tsukimura, K., Miyoshi, Y., Takagi, T., Suzuki, M., & Wada, S. 2021. Amorphous nanoparticles in clays, soils and marine sediments analyzed with a small angle X-ray scattering (SAXS) method. Scientific Reports,

11(1), 6997. https://doi.org/10.1038/s41598-021-86573-9

Wiśniewska, M., Fijałkowska, G., Szewczuk-Karpisz, K., Herda, K., & Chibowski, S. 2022. Ionic

Polyacrylamides as Stability-Modifying Substances of Soil Mineral Suspensions Containing Heavy

Metal Impurities. Processes, 10(8), 1473. https://doi.org/10.3390/pr10081473

Xinwei, Z., Yunchao, Z., & Qiulan, F. 2023. Main influencing factors of soil particle distribution in the karst

basin. CATENA, 224, 107002. https://doi.org/10.1016/j.catena.2023.107002

Xu, Y., Bi, R., & Li, Y. 2023. Effects of anthropogenic and natural environmental factors on the spatial

distribution of trace elements in agricultural soils. Ecotoxicology and Environmental Safety, 249,

114436. https://doi.org/10.1016/j.ecoenv.2022.114436

Xu, Z., & Tsang, D. C. W. 2024. Mineral-mediated stability of organic carbon in soil and relevant interaction

mechanisms. Eco-Environment & Health, 3(1), 59–76. https://doi.org/10.1016/j.eehl.2023.12.003

Xue, B., Huang, L., Li, X., Lu, J., Gao, R., Kamran, M., & Fahad, S. 2022. Effect of Clay Mineralogy and Soil

Organic Carbon in Aggregates under Straw Incorporation. Agronomy, 12(2), 534.

https://doi.org/10.3390/agronomy12020534

Yu, M., Tariq, S. M., & Yang, H. 2022. Engineering clay minerals to manage the functions of soils. Clay

Minerals, 57(1), 51–69. https://doi.org/10.1180/clm.2022.19

Yu, Z., Zhang, Y., Sheng, H., Zhang, L., Zhou, Q., & Yan, X. 2020. Composition of clay minerals and their

pedogenetic and taxonomic implications for Stagnic Anthrosols derived from different parent materials

in Hunan Province, China. Journal of Soils and Sediments, 20(3), 1558–1570.

https://doi.org/10.1007/s11368-019-02499-w

Zaarur, S., & Erel, R. 2024. The effect of soil mineral composition on K availability to plants. EGU24-21838.

https://doi.org/10.5194/egusphere-egu24-21838, 2024.

Zad, A. A., & Kazemzadeh, M. 2024. Stabilization of Lead and Zinc Nitrate-Contaminated Low Plasticity

Clayey Soil Using Metakaolin Geopolymer. Soil and Sediment Contamination: An International

Journal, 33(7), 759–783. https://doi.org/10.1080/15320383.2023.2255676

Zarebanadkouki, M., Al Hamwi, W., Abdalla, M., Rahnemaie, R., & Schaller, J. 2024. The effect of amorphous

silica on soil–plant–water relations in soils with contrasting textures. Scientific Reports, 14(1), 10277.

https://doi.org/10.1038/s41598-024-60947-1

Zhang, B., Zhou, M., Zhu, B., Xiao, Q., Zheng, X., Zhang, J., Müller, C., & Butterbach-Bahl, K. 2022. Soil clay

minerals: An overlooked mediator of gross N transformations in Regosolic soils of subtropical montane

landscapes. Soil Biology and Biochemistry, 168, 108612. https://doi.org/10.1016/j.soilbio.2022.108612

Zhang, J., Zhu, Z., Niu, M., Yu, M., Dong, X., & Yang, H. 2024. In-situ evolution of ionic sites at clay mineral

interfaces facilitates fluoride and phosphorus mineralization. Environmental Science & Technology,

58(32), 14541–14554. https://doi.org/10.1021/acs.est.4c05988

Zhang, Q., & Wang, C. 2020. Natural and Human Factors Affect the Distribution of Soil Heavy Metal Pollution:

A Review. Water, Air, & Soil Pollution, 231(7), 350. https://doi.org/10.1007/s11270-020-04728-2

Zhang, Y., Tian, R., Liu, D., Guo, X., Yang, S., & Li, H. 2022. Insight into Hofmeister effects on aggregation of

2:1 and 1:1 type clay minerals. European Journal of Soil Science, 73(4).

https://doi.org/10.1111/ejss.13287

Zhao, L., Hong, H., Qian, F., Hei, H., & Algeo, T. J. 2023. Hydrologic regulation of clay-mineral transformations

in a redoximorphic soil of subtropical monsoonal China. American Mineralogist, 108(3), 1881–1896.

https://doi.org/10.2138/am-2022-8706

Zhao, M., Zhang, Z., Li, M., Gao, C., Zhang, J., & He, N. 2024. Soil Mineral-Associated Organic Carbon and Its

Relationship to Clay Minerals across Grassland Transects in China. Applied Sciences, 14(5), 2061.

https://doi.org/10.3390/app14052061

Published

2025-02-28

Issue

Section

Articles