Interaksi Fe3+ dan pH terhadap Dispersibilitas Klei Tipe 1:1 pada Tanah Sawah di Kabupaten Bogor

Authors

  • R Ayu Chairunnisya Fakultas Pertanian, Universitas Syiah Kuala, Indonesia
  • Retno Purnama Sari Fakultas Pertanian, Universitas Jember, Indonesia
  • Silfi Indrasari Fakultas pertanian, Universitas Sam Ratulangi, Indoneisa
  • Retno L Lubis Fakultas Pertanian, Universitas Syiah Kuala, Indonesia
  • Yaumil Khairiyah Fakultas Pertanian, Universitas Syiah Kuala, Indonesia
  • Khairun Purgawa Fakultas Pertanian, Universitas Syiah Kuala, Indonesia
  • Iskandar Fakultas Pertanian, IPB University, Indonesia
  • Dyah Tjahyandari Suryaningtyas Fakultas Pertanian, IPB University, Indonesia

DOI:

https://doi.org/10.19184/bip.v8i3.53714

Keywords:

dispersion, ferric ion (Fe3+), clay type 1:1, soil pH

Abstract

Klei tipe 1:1 seperti kaolinit umumnya memiliki kestabilan dispersi yang tinggi karena muatan permukaan yang relatif rendah, namun keberadaan ion multivalen seperti Fe³⁺ dalam lingkungan tanah dapat memengaruhi perilaku dispersinya. Penelitian ini bertujuan untuk mengkaji pengaruh variasi konsentrasi ion Fe³⁺ dan pH terhadap tingkat dispersi klei 1:1 pada tiga jenis tanah, yaitu DRM1, GSR1, dan GSDR1. Metode yang digunakan meliputi pencampuran suspensi tanah dengan larutan FeCl₃ pada berbagai konsentrasi (0,01 M hingga 0,10 mmol L-1) dan pada kisaran pH 5,5–6,5, diikuti dengan pengukuran nilai transmisi menggunakan spektrofotometer sebagai indikator tingkat flokulasi. Hasil menunjukkan bahwa peningkatan konsentrasi Fe³⁺ tidak secara konsisten menurunkan nilai transmisi. Pada DRM1 dan GSDR1, peningkatan konsentrasi Fe³⁺ justru menyebabkan kenaikan transmisi pada pH tertentu, menunjukkan terjadinya dispersi akibat pembentukan kompleks Fe hidroksi bermuatan negatif. Sementara itu, pada GSR1, penurunan transmisi yang lebih stabil diamati, menunjukkan respons tanah yang lebih sesuai dengan teori flokulasi. Temuan ini menunjukkan bahwa ion Fe³⁺ tidak selalu berfungsi sebagai agen flokulan yang efektif bagi klei 1:1, tergantung pada kondisi kimia tanah. Implikasi dari hasil ini penting bagi pengelolaan lahan pertanian, khususnya dalam mencegah degradasi struktur tanah akibat dispersi klei. Pengaturan pH, penambahan amelioran, dan manajemen irigasi yang tepat menjadi strategi penting dalam mempertahankan stabilitas agregat tanah.  

Downloads

Download data is not yet available.

References

Aljumaily, M. M., & Al-Hamandi, H. M. 2022. Organic Matter and Heavy Metals Sorption. Tikrit Journal for Agricultural Sciences, 22(3), 158–165. https://doi.org/10.25130/tjas.22.3.18

Arifien, Y., & Anggarawati, S. 2019. Characteristics of Soil Fertility Affecting the Rice Fields Productivity in Bogor Regency. Agrotech Journal, 4(2), 61–68. https://doi.org/10.31327/atj.v4i2.1083

Bulo, F. O., & Desta, H. S. 2021. Soils Acidity Characterization, Mapping and Lime Recommendation of Jimma Arjo District, East Wollega Zone of Oromia Region, Ethiopia. Springer Science and Business Media LLC. https://doi.org/10.21203/rs.3.rs-637000/v1

Cherie, D. A., & Abeje, B. Y. 2022. Soil Acidity Formation and its Amelioration Methods in Ethiopia: A Review. Asian Journal of Soil Science and Plant Nutrition, 23–31. https://doi.org/10.9734/ajsspn/2022/v8i230136

De Mastro, F., Traversa, A., Cocozza, C., Pallara, M., & Brunetti, G. 2020. Soil Organic Carbon Stabilization: Influence of Tillage on Mineralogical and Chemical Parameters. Soil Systems, 4(3), 58. https://doi.org/10.3390/soilsystems4030058

Devi, M. M., Bhattacharyya, D., Das, K. N., & Devi, K. D. 2023. Distribution Study of the Different Forms of Soil Acidity and Available Nutrients in Upper Brahmaputra Valley Zone (UBVZ) of Assam. International Journal of Plant & Soil Science, 35(18), 634–643. https://doi.org/10.9734/ijpss/2023/v35i183328

Durgut, E., Cinar, M., Terzi, M., Kursun Unver, I., Yildirim, Y., & Ozdemir, O. 2022. Evaluation of Different Dispersants on the Dispersion/Sedimentation Behavior of Halloysite, Kaolinite, and Quartz Suspensions in the Enrichment of Halloysite Ore by Mechanical Dispersion. Minerals, 12(11), 1426. https://doi.org/10.3390/min12111426

Enesi, R. O., Dyck, M., Chang, S., Thilakarathna, M. S., Fan, X., Strelkov, S., & Gorim, L. Y. 2023. Liming remediates soil acidity and improves crop yield and profitability—A meta-analysis. Frontiers in Agronomy, 5. https://doi.org/10.3389/fagro.2023.1194896

Feng, Y., Zhou, X., Yang, J., Gao, X., Yin, L., Zhao, Y., & Zhang, B. 2020. Encapsulation of Ammonia Borane in Pd/Halloysite Nanotubes for Efficient Thermal Dehydrogenation. ACS Sustainable Chemistry & Engineering, 8(5), 2122–2129. https://doi.org/10.1021/acssuschemeng.9b04480

Frank, T., Zimmermann, I., & Horn, R. 2020. Lime application in marshlands of Northern Germany—Influence of liming on the physicochemical and hydraulic properties of clayey soils. Soil and Tillage Research, 204, 104730. https://doi.org/10.1016/j.still.2020.104730

Gayathri, P., M S Swaminathan Rice Research Station, Moncompu, Kerala Agricultural University, 688503, Kerala, India., Jose, N., M, S., Joseph, C., M S Swaminathan Rice Research Station, Moncompu, Kerala Agricultural University, 688503, Kerala, India., M S Swaminathan Rice Research Station, Moncompu, Kerala Agricultural University, 688503, Kerala, India., & M S Swaminathan Rice Research Station, Moncompu, Kerala Agricultural University, 688503, Kerala, India. 2024. Ameliorants for the Management of Soil Acidity – A Review. Journal of Rice Research, 17(1). https://doi.org/10.58297/ebqd3473

Getahun, G. T., Etana, A., Munkholm, L. J., & Kirchmann, H. 2021. Liming with CaCO3 or CaO affects aggregate stability and dissolved reactive phosphorus in a heavy clay subsoil. Soil and Tillage Research, 214, 105162. https://doi.org/10.1016/j.still.2021.105162

Gray-Wannell, N., Cubillas, P., Aslam, Z., Holliman, P. J., Greenwell, H. C., Brydson, R., Delbos, E., Strachan, L.-J., Fuller, M., & Hillier, S. 2023. Morphological features of halloysite nanotubes as revealed by various microscopies. Clay Minerals, 58(4), 395–407. https://doi.org/10.1180/clm.2023.37

Gray-Wannell, N., Holliman, P. J., Greenwell, H. C., Delbos, E., & Hillier, S. 2020. Adsorption of phosphate by halloysite (7 Å) nanotubes (HNTs). Clay Minerals, 55(2), 184–193. https://doi.org/10.1180/clm.2020.24

Han, J., Kim, M., & Ro, H.-M. 2020. Factors modifying the structural configuration of oxyanions and organic acids adsorbed on iron (hydr)oxides in soils. A review. Environmental Chemistry Letters, 18(3), 631–662. https://doi.org/10.1007/s10311-020-00964-4

Huang, L., Jia, X., Shao, M., Chen, L., Han, G., & Zhang, G. 2018. Phases and rates of iron and magnetism changes during paddy soil development on calcareous marine sediment and acid Quaternary red-clay. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-017-18963-x

Islam, Md. R., Singh, B., & Dijkstra, F. A. 2022. Stabilisation of soil organic matter: Interactions between clay and microbes. Biogeochemistry, 160(2), 145–158. https://doi.org/10.1007/s10533-022-00956-2

Jiang, X., Ma, Y., Li, G., Huang, W., Zhao, H., Cao, G., & Wang, A. 2022. Spatial Distribution Characteristics of Soil Salt Ions in Tumushuke City, Xinjiang. Sustainability, 14(24), 16486. https://doi.org/10.3390/su142416486

Kameda, J. (2021). Mineralogical and physico-chemical properties of halloysite-bearing slip surface material from a landslide during the 2018 Eastern Iburi earthquake, Hokkaido. Progress in Earth and Planetary Science, 8(1). https://doi.org/10.1186/s40645-021-00428-5

Kaniewska, K., Kościelniak, P., & Karbarz, M. 2023. pH Modulated Formation of Complexes with Various Stoichiometry between Polymer Network and Fe(III) in Thermosensitive Gels Modified with Gallic Acid. Gels, 9(6), 447. https://doi.org/10.3390/gels9060447

Katana, B., Takács, D., Csapó, E., Szabó, T., Jamnik, A., & Szilagyi, I. 2020. Ion Specific Effects on the Stability of Halloysite Nanotube Colloids—Inorganic Salts versus Ionic Liquids. The Journal of Physical Chemistry B, 124(43), 9757–9765. https://doi.org/10.1021/acs.jpcb.0c07885

Krause, L., Klumpp, E., Nofz, I., Missong, A., Amelung, W., & Siebers, N. 2020. Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols. Geoderma, 374, 114421. https://doi.org/10.1016/j.geoderma.2020.114421

Kurniati, ., Sudarsono, ., & Suwardi. 2017. Characterization of Several Paddy Soil Types in Bogor, West Java, Indonesia. JOURNAL OF TROPICAL SOILS, 21(1), 27. https://doi.org/10.5400/jts.2016.v21i1.27-32

Licursi, E. A., Bertolino, L. C., & Da Silva, F. J. 2023. Mineralogical Characterization of Pegmatites with Occurrences of Halloysite in the Regions of Porciúncula (RJ) and Patrocínio do Muriaé (MG), Southeastern Brazil. Anuário Do Instituto de Geociências, 46. https://doi.org/10.11137/1982-3908_2023_46_52487

Lipiec, J., Czyż, E. A., Dexter, A. R., & Siczek, A. 2018. Effects of soil deformation on clay dispersion in loess soil. Soil and Tillage Research, 184, 203–206. https://doi.org/10.1016/j.still.2018.08.005

Meftah Elgubbi, H., Salhah Othman, S., & Wahida Harun, F. 2020. Modification of kaolinite clay using benzyltriethylammonium chloride as a surfactant: Preparation and characterization. International Journal of Engineering & Technology, 9(4), 850–856. https://doi.org/10.14419/ijet.v9i4.31088

Melby, E. S., Mensch, A. C., Lohse, S. E., Hu, D., Orr, G., Murphy, C. J., Hamers, R. J., & Pedersen, J. A. 2016. Formation of supported lipid bilayers containing phase-segregated domains and their interaction with gold nanoparticles. Environmental Science: Nano, 3(1), 45–55. https://doi.org/10.1039/c5en00098j

Melo, T. R. D., Machado, W., & Tavares Filho, J. 2020. Charge sparsity: An index to quantify cation effects on clay dispersion in soils. Scientia Agricola, 77(1). https://doi.org/10.1590/1678-992x-2017-0392

Nguyen, M. N., Dultz, S., Kasbohm, J., & Le, D. 2009. Clay dispersion and its relation to surface charge in a paddy soil of the Red River Delta, Vietnam. Journal of Plant Nutrition and Soil Science, 172(4), 477–486. https://doi.org/10.1002/jpln.200700217

Nguyen, M. N., Dultz, S., Tran, T. T. T., & Bui, A. T. K. 2013. Effect of anions on dispersion of a kaolinitic soil clay: A combined study of dynamic light scattering and test tube experiments. Geoderma, 209–210, 209–213. https://doi.org/10.1016/j.geoderma.2013.06.024

Nguyen, M. N., Picardal, F., Dultz, S., Dam, T. T. N., Nguyen, A. V., & Nguyen, K. M. 2017. Silicic acid as a dispersibility enhancer in a Fe-oxide-rich kaolinitic soil clay. Geoderma, 286, 8–14. https://doi.org/10.1016/j.geoderma.2016.10.029

Nuruzade, O., Abdullayev, E., & Erastova, V. 2023. Organic–Mineral Interactions under Natural Conditions: A Computational Study of Flavone Adsorption on Smectite Clay. The Journal of Physical Chemistry C, 127(27), 13167–13177. https://doi.org/10.1021/acs.jpcc.3c00174

Oumar, K. O., Gilbert François, N. N., Bertrand, M. M., Nathanael, T., Constantin, B. E., Simon, M. J., & Jacques, E. 2022. Mineralogical, Geochemical Characterization and Physicochemical Properties of Kaolinitic Clays of the Eastern Part of the Douala Sub-Basin, Cameroon, Central Africa. Applied Sciences, 12(18), 9143. https://doi.org/10.3390/app12189143

Rajabi, A. M., Ardakani, Sh. B., & Abdollahi, A. H. 2021. The Effect of Nano-Iron Oxide on the Strength and Consolidation Parameters of a Clay Soil: An Experimental Study. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45(3), 1759–1768. https://doi.org/10.1007/s40996-021-00640-9

Rajan, K., Natarajan, A., Thilagam, V. K., Kumar, K. S. A., Dinesh, D., Alam, N. M., Khola, O. P. S., & Gowda, R. C. 2016. Clay dispersion induced by changes in some soil properties in undulating salt-affected landscapes of southern Karnataka, India. CURRENT SCIENCE, 110(5).

Ren, J., Zheng, C., Yong, Y., Lin, Z., Zhu, A., He, C., & Pan, H. 2023. Effect and mechanism of kaolinite loading amorphous zero-valent iron to stabilize cadmium in soil. Science of The Total Environment, 904, 166319. https://doi.org/10.1016/j.scitotenv.2023.166319

Rengasamy, P., Tavakkoli, E., & McDonald, G. K. 2016. Exchangeable cations and clay dispersion: Net dispersive charge, a new concept for dispersive soil. European Journal of Soil Science, 67(5), 659–665. https://doi.org/10.1111/ejss.12369

Sitarz-Palczak, E., & Kalembkiewicz, J. 2021. The Influence of Physical Modificationon the Sorption Properties of GeopolymersObtained from Halloysite. Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes/137372

Stor, M., Czelej, K., Krasiński, A., & Gradoń, L. 2023. Exceptional Sorption of Heavy Metals from Natural Water by Halloysite Particles: A New Prospect of Highly Efficient Water Remediation. Nanomaterials, 13(7), 1162. https://doi.org/10.3390/nano13071162

Taroni, T., Cauteruccio, S., Vago, R., Franchi, S., Barbero, N., Licandro, E., Ardizzone, S., & Meroni, D. 2020. Thiahelicene-grafted halloysite nanotubes: Characterization, biological studies and pH triggered release. Applied Surface Science, 520, 146351. https://doi.org/10.1016/j.apsusc.2020.146351

Thabit, F. N., El-Shater, A.-H., & Soliman, W. 2023. Role of silt and clay fractions in organic carbon and nitrogen stabilization in soils of some old fruit orchards in the Nile floodplain, Sohag Governorate, Egypt. Journal of Soil Science and Plant Nutrition, 23(2), 2525–2544. https://doi.org/10.1007/s42729-023-01209-3

Villa-Reyna, A.-L., Aguilar-Martínez, M., Ochoa-Terán, A., Santacruz-Ortega, H., Leyva-Peralta, M.-A., Vargas-Durazo, J.-T., Salazar-Gastelum, M. I., García-Elías, J., & Gálvez-Ruiz, J.-C. 2023. Efficient and Sustainable Bidentate Amines-Functionalized Resins for Removing Ag+, Cu2+, Pb2+, and Fe3+ from Water. Polymers, 15(13), 2778. https://doi.org/10.3390/polym15132778

Vodyanitskii, Yu. N., & Makarov, M. I. (2017). Organochlorine compounds and the biogeochemical cycle of chlorine in soils: A review. Eurasian Soil Science, 50(9), 1025–1032. https://doi.org/10.1134/s1064229317090113

Xue, J., Ren, D., Wang, S., Bu, X., Song, Z., Zhao, C., & Chen, T. 2021. Effect of Ferric Ions on Sulfidization Flotation of Oxidize Digenite Fine Particles and Their Significance. Minerals, 11(3), 305. https://doi.org/10.3390/min11030305

Yu, X., He, L., Zhang, X., Bao, G., Zhang, R., Jin, X., & Qin, D. 2024. Eco-friendly flame-retardant bamboo fiber/polypropylene composite based on the immobilization of halloysite nanotubes by tannic acid-Fe3+ complex. International Journal of Biological Macromolecules, 265, 130894. https://doi.org/10.1016/j.ijbiomac.2024.130894

Zhang, J., Qu, X., Song, X., Xiao, Y., Wang, A., & Li, D. 2023. Spatial Variation in Soil Base Saturation and Exchangeable Cations in Tropical and Subtropical China. Agronomy, 13(3), 781. https://doi.org/10.3390/agronomy13030781

Zhang, J., Wang, Q., Wang, W., & Zhang, X. 2021. The dispersion mechanism of dispersive seasonally frozen soil in western Jilin Province. Bulletin of Engineering Geology and the Environment, 80(7), 5493–5503. https://doi.org/10.1007/s10064-021-02221-6

Zhao, T., Xu, S., & Hao, F. 2023. Differential adsorption of clay minerals: Implications for organic matter enrichment. Earth-Science Reviews, 246, 104598. https://doi.org/10.1016/j.earscirev.2023.104598

Downloads

Published

2025-08-04

Most read articles by the same author(s)