Interaksi Fe3+ dan pH terhadap Dispersibilitas Klei Tipe 1:1 pada Tanah Sawah di Kabupaten Bogor
DOI:
https://doi.org/10.19184/bip.v8i3.53714Keywords:
dispersion, ferric ion (Fe3+), clay type 1:1, soil pHAbstract
Klei tipe 1:1 seperti kaolinit umumnya memiliki kestabilan dispersi yang tinggi karena muatan permukaan yang relatif rendah, namun keberadaan ion multivalen seperti Fe³⁺ dalam lingkungan tanah dapat memengaruhi perilaku dispersinya. Penelitian ini bertujuan untuk mengkaji pengaruh variasi konsentrasi ion Fe³⁺ dan pH terhadap tingkat dispersi klei 1:1 pada tiga jenis tanah, yaitu DRM1, GSR1, dan GSDR1. Metode yang digunakan meliputi pencampuran suspensi tanah dengan larutan FeCl₃ pada berbagai konsentrasi (0,01 M hingga 0,10 mmol L-1) dan pada kisaran pH 5,5–6,5, diikuti dengan pengukuran nilai transmisi menggunakan spektrofotometer sebagai indikator tingkat flokulasi. Hasil menunjukkan bahwa peningkatan konsentrasi Fe³⁺ tidak secara konsisten menurunkan nilai transmisi. Pada DRM1 dan GSDR1, peningkatan konsentrasi Fe³⁺ justru menyebabkan kenaikan transmisi pada pH tertentu, menunjukkan terjadinya dispersi akibat pembentukan kompleks Fe hidroksi bermuatan negatif. Sementara itu, pada GSR1, penurunan transmisi yang lebih stabil diamati, menunjukkan respons tanah yang lebih sesuai dengan teori flokulasi. Temuan ini menunjukkan bahwa ion Fe³⁺ tidak selalu berfungsi sebagai agen flokulan yang efektif bagi klei 1:1, tergantung pada kondisi kimia tanah. Implikasi dari hasil ini penting bagi pengelolaan lahan pertanian, khususnya dalam mencegah degradasi struktur tanah akibat dispersi klei. Pengaturan pH, penambahan amelioran, dan manajemen irigasi yang tepat menjadi strategi penting dalam mempertahankan stabilitas agregat tanah.
Downloads
References
Aljumaily, M. M., & Al-Hamandi, H. M. 2022. Organic Matter and Heavy Metals Sorption. Tikrit Journal for Agricultural Sciences, 22(3), 158–165. https://doi.org/10.25130/tjas.22.3.18
Arifien, Y., & Anggarawati, S. 2019. Characteristics of Soil Fertility Affecting the Rice Fields Productivity in Bogor Regency. Agrotech Journal, 4(2), 61–68. https://doi.org/10.31327/atj.v4i2.1083
Bulo, F. O., & Desta, H. S. 2021. Soils Acidity Characterization, Mapping and Lime Recommendation of Jimma Arjo District, East Wollega Zone of Oromia Region, Ethiopia. Springer Science and Business Media LLC. https://doi.org/10.21203/rs.3.rs-637000/v1
Cherie, D. A., & Abeje, B. Y. 2022. Soil Acidity Formation and its Amelioration Methods in Ethiopia: A Review. Asian Journal of Soil Science and Plant Nutrition, 23–31. https://doi.org/10.9734/ajsspn/2022/v8i230136
De Mastro, F., Traversa, A., Cocozza, C., Pallara, M., & Brunetti, G. 2020. Soil Organic Carbon Stabilization: Influence of Tillage on Mineralogical and Chemical Parameters. Soil Systems, 4(3), 58. https://doi.org/10.3390/soilsystems4030058
Devi, M. M., Bhattacharyya, D., Das, K. N., & Devi, K. D. 2023. Distribution Study of the Different Forms of Soil Acidity and Available Nutrients in Upper Brahmaputra Valley Zone (UBVZ) of Assam. International Journal of Plant & Soil Science, 35(18), 634–643. https://doi.org/10.9734/ijpss/2023/v35i183328
Durgut, E., Cinar, M., Terzi, M., Kursun Unver, I., Yildirim, Y., & Ozdemir, O. 2022. Evaluation of Different Dispersants on the Dispersion/Sedimentation Behavior of Halloysite, Kaolinite, and Quartz Suspensions in the Enrichment of Halloysite Ore by Mechanical Dispersion. Minerals, 12(11), 1426. https://doi.org/10.3390/min12111426
Enesi, R. O., Dyck, M., Chang, S., Thilakarathna, M. S., Fan, X., Strelkov, S., & Gorim, L. Y. 2023. Liming remediates soil acidity and improves crop yield and profitability—A meta-analysis. Frontiers in Agronomy, 5. https://doi.org/10.3389/fagro.2023.1194896
Feng, Y., Zhou, X., Yang, J., Gao, X., Yin, L., Zhao, Y., & Zhang, B. 2020. Encapsulation of Ammonia Borane in Pd/Halloysite Nanotubes for Efficient Thermal Dehydrogenation. ACS Sustainable Chemistry & Engineering, 8(5), 2122–2129. https://doi.org/10.1021/acssuschemeng.9b04480
Frank, T., Zimmermann, I., & Horn, R. 2020. Lime application in marshlands of Northern Germany—Influence of liming on the physicochemical and hydraulic properties of clayey soils. Soil and Tillage Research, 204, 104730. https://doi.org/10.1016/j.still.2020.104730
Gayathri, P., M S Swaminathan Rice Research Station, Moncompu, Kerala Agricultural University, 688503, Kerala, India., Jose, N., M, S., Joseph, C., M S Swaminathan Rice Research Station, Moncompu, Kerala Agricultural University, 688503, Kerala, India., M S Swaminathan Rice Research Station, Moncompu, Kerala Agricultural University, 688503, Kerala, India., & M S Swaminathan Rice Research Station, Moncompu, Kerala Agricultural University, 688503, Kerala, India. 2024. Ameliorants for the Management of Soil Acidity – A Review. Journal of Rice Research, 17(1). https://doi.org/10.58297/ebqd3473
Getahun, G. T., Etana, A., Munkholm, L. J., & Kirchmann, H. 2021. Liming with CaCO3 or CaO affects aggregate stability and dissolved reactive phosphorus in a heavy clay subsoil. Soil and Tillage Research, 214, 105162. https://doi.org/10.1016/j.still.2021.105162
Gray-Wannell, N., Cubillas, P., Aslam, Z., Holliman, P. J., Greenwell, H. C., Brydson, R., Delbos, E., Strachan, L.-J., Fuller, M., & Hillier, S. 2023. Morphological features of halloysite nanotubes as revealed by various microscopies. Clay Minerals, 58(4), 395–407. https://doi.org/10.1180/clm.2023.37
Gray-Wannell, N., Holliman, P. J., Greenwell, H. C., Delbos, E., & Hillier, S. 2020. Adsorption of phosphate by halloysite (7 Å) nanotubes (HNTs). Clay Minerals, 55(2), 184–193. https://doi.org/10.1180/clm.2020.24
Han, J., Kim, M., & Ro, H.-M. 2020. Factors modifying the structural configuration of oxyanions and organic acids adsorbed on iron (hydr)oxides in soils. A review. Environmental Chemistry Letters, 18(3), 631–662. https://doi.org/10.1007/s10311-020-00964-4
Huang, L., Jia, X., Shao, M., Chen, L., Han, G., & Zhang, G. 2018. Phases and rates of iron and magnetism changes during paddy soil development on calcareous marine sediment and acid Quaternary red-clay. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-017-18963-x
Islam, Md. R., Singh, B., & Dijkstra, F. A. 2022. Stabilisation of soil organic matter: Interactions between clay and microbes. Biogeochemistry, 160(2), 145–158. https://doi.org/10.1007/s10533-022-00956-2
Jiang, X., Ma, Y., Li, G., Huang, W., Zhao, H., Cao, G., & Wang, A. 2022. Spatial Distribution Characteristics of Soil Salt Ions in Tumushuke City, Xinjiang. Sustainability, 14(24), 16486. https://doi.org/10.3390/su142416486
Kameda, J. (2021). Mineralogical and physico-chemical properties of halloysite-bearing slip surface material from a landslide during the 2018 Eastern Iburi earthquake, Hokkaido. Progress in Earth and Planetary Science, 8(1). https://doi.org/10.1186/s40645-021-00428-5
Kaniewska, K., Kościelniak, P., & Karbarz, M. 2023. pH Modulated Formation of Complexes with Various Stoichiometry between Polymer Network and Fe(III) in Thermosensitive Gels Modified with Gallic Acid. Gels, 9(6), 447. https://doi.org/10.3390/gels9060447
Katana, B., Takács, D., Csapó, E., Szabó, T., Jamnik, A., & Szilagyi, I. 2020. Ion Specific Effects on the Stability of Halloysite Nanotube Colloids—Inorganic Salts versus Ionic Liquids. The Journal of Physical Chemistry B, 124(43), 9757–9765. https://doi.org/10.1021/acs.jpcb.0c07885
Krause, L., Klumpp, E., Nofz, I., Missong, A., Amelung, W., & Siebers, N. 2020. Colloidal iron and organic carbon control soil aggregate formation and stability in arable Luvisols. Geoderma, 374, 114421. https://doi.org/10.1016/j.geoderma.2020.114421
Kurniati, ., Sudarsono, ., & Suwardi. 2017. Characterization of Several Paddy Soil Types in Bogor, West Java, Indonesia. JOURNAL OF TROPICAL SOILS, 21(1), 27. https://doi.org/10.5400/jts.2016.v21i1.27-32
Licursi, E. A., Bertolino, L. C., & Da Silva, F. J. 2023. Mineralogical Characterization of Pegmatites with Occurrences of Halloysite in the Regions of Porciúncula (RJ) and Patrocínio do Muriaé (MG), Southeastern Brazil. Anuário Do Instituto de Geociências, 46. https://doi.org/10.11137/1982-3908_2023_46_52487
Lipiec, J., Czyż, E. A., Dexter, A. R., & Siczek, A. 2018. Effects of soil deformation on clay dispersion in loess soil. Soil and Tillage Research, 184, 203–206. https://doi.org/10.1016/j.still.2018.08.005
Meftah Elgubbi, H., Salhah Othman, S., & Wahida Harun, F. 2020. Modification of kaolinite clay using benzyltriethylammonium chloride as a surfactant: Preparation and characterization. International Journal of Engineering & Technology, 9(4), 850–856. https://doi.org/10.14419/ijet.v9i4.31088
Melby, E. S., Mensch, A. C., Lohse, S. E., Hu, D., Orr, G., Murphy, C. J., Hamers, R. J., & Pedersen, J. A. 2016. Formation of supported lipid bilayers containing phase-segregated domains and their interaction with gold nanoparticles. Environmental Science: Nano, 3(1), 45–55. https://doi.org/10.1039/c5en00098j
Melo, T. R. D., Machado, W., & Tavares Filho, J. 2020. Charge sparsity: An index to quantify cation effects on clay dispersion in soils. Scientia Agricola, 77(1). https://doi.org/10.1590/1678-992x-2017-0392
Nguyen, M. N., Dultz, S., Kasbohm, J., & Le, D. 2009. Clay dispersion and its relation to surface charge in a paddy soil of the Red River Delta, Vietnam. Journal of Plant Nutrition and Soil Science, 172(4), 477–486. https://doi.org/10.1002/jpln.200700217
Nguyen, M. N., Dultz, S., Tran, T. T. T., & Bui, A. T. K. 2013. Effect of anions on dispersion of a kaolinitic soil clay: A combined study of dynamic light scattering and test tube experiments. Geoderma, 209–210, 209–213. https://doi.org/10.1016/j.geoderma.2013.06.024
Nguyen, M. N., Picardal, F., Dultz, S., Dam, T. T. N., Nguyen, A. V., & Nguyen, K. M. 2017. Silicic acid as a dispersibility enhancer in a Fe-oxide-rich kaolinitic soil clay. Geoderma, 286, 8–14. https://doi.org/10.1016/j.geoderma.2016.10.029
Nuruzade, O., Abdullayev, E., & Erastova, V. 2023. Organic–Mineral Interactions under Natural Conditions: A Computational Study of Flavone Adsorption on Smectite Clay. The Journal of Physical Chemistry C, 127(27), 13167–13177. https://doi.org/10.1021/acs.jpcc.3c00174
Oumar, K. O., Gilbert François, N. N., Bertrand, M. M., Nathanael, T., Constantin, B. E., Simon, M. J., & Jacques, E. 2022. Mineralogical, Geochemical Characterization and Physicochemical Properties of Kaolinitic Clays of the Eastern Part of the Douala Sub-Basin, Cameroon, Central Africa. Applied Sciences, 12(18), 9143. https://doi.org/10.3390/app12189143
Rajabi, A. M., Ardakani, Sh. B., & Abdollahi, A. H. 2021. The Effect of Nano-Iron Oxide on the Strength and Consolidation Parameters of a Clay Soil: An Experimental Study. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 45(3), 1759–1768. https://doi.org/10.1007/s40996-021-00640-9
Rajan, K., Natarajan, A., Thilagam, V. K., Kumar, K. S. A., Dinesh, D., Alam, N. M., Khola, O. P. S., & Gowda, R. C. 2016. Clay dispersion induced by changes in some soil properties in undulating salt-affected landscapes of southern Karnataka, India. CURRENT SCIENCE, 110(5).
Ren, J., Zheng, C., Yong, Y., Lin, Z., Zhu, A., He, C., & Pan, H. 2023. Effect and mechanism of kaolinite loading amorphous zero-valent iron to stabilize cadmium in soil. Science of The Total Environment, 904, 166319. https://doi.org/10.1016/j.scitotenv.2023.166319
Rengasamy, P., Tavakkoli, E., & McDonald, G. K. 2016. Exchangeable cations and clay dispersion: Net dispersive charge, a new concept for dispersive soil. European Journal of Soil Science, 67(5), 659–665. https://doi.org/10.1111/ejss.12369
Sitarz-Palczak, E., & Kalembkiewicz, J. 2021. The Influence of Physical Modificationon the Sorption Properties of GeopolymersObtained from Halloysite. Polish Journal of Environmental Studies. https://doi.org/10.15244/pjoes/137372
Stor, M., Czelej, K., Krasiński, A., & Gradoń, L. 2023. Exceptional Sorption of Heavy Metals from Natural Water by Halloysite Particles: A New Prospect of Highly Efficient Water Remediation. Nanomaterials, 13(7), 1162. https://doi.org/10.3390/nano13071162
Taroni, T., Cauteruccio, S., Vago, R., Franchi, S., Barbero, N., Licandro, E., Ardizzone, S., & Meroni, D. 2020. Thiahelicene-grafted halloysite nanotubes: Characterization, biological studies and pH triggered release. Applied Surface Science, 520, 146351. https://doi.org/10.1016/j.apsusc.2020.146351
Thabit, F. N., El-Shater, A.-H., & Soliman, W. 2023. Role of silt and clay fractions in organic carbon and nitrogen stabilization in soils of some old fruit orchards in the Nile floodplain, Sohag Governorate, Egypt. Journal of Soil Science and Plant Nutrition, 23(2), 2525–2544. https://doi.org/10.1007/s42729-023-01209-3
Villa-Reyna, A.-L., Aguilar-Martínez, M., Ochoa-Terán, A., Santacruz-Ortega, H., Leyva-Peralta, M.-A., Vargas-Durazo, J.-T., Salazar-Gastelum, M. I., García-Elías, J., & Gálvez-Ruiz, J.-C. 2023. Efficient and Sustainable Bidentate Amines-Functionalized Resins for Removing Ag+, Cu2+, Pb2+, and Fe3+ from Water. Polymers, 15(13), 2778. https://doi.org/10.3390/polym15132778
Vodyanitskii, Yu. N., & Makarov, M. I. (2017). Organochlorine compounds and the biogeochemical cycle of chlorine in soils: A review. Eurasian Soil Science, 50(9), 1025–1032. https://doi.org/10.1134/s1064229317090113
Xue, J., Ren, D., Wang, S., Bu, X., Song, Z., Zhao, C., & Chen, T. 2021. Effect of Ferric Ions on Sulfidization Flotation of Oxidize Digenite Fine Particles and Their Significance. Minerals, 11(3), 305. https://doi.org/10.3390/min11030305
Yu, X., He, L., Zhang, X., Bao, G., Zhang, R., Jin, X., & Qin, D. 2024. Eco-friendly flame-retardant bamboo fiber/polypropylene composite based on the immobilization of halloysite nanotubes by tannic acid-Fe3+ complex. International Journal of Biological Macromolecules, 265, 130894. https://doi.org/10.1016/j.ijbiomac.2024.130894
Zhang, J., Qu, X., Song, X., Xiao, Y., Wang, A., & Li, D. 2023. Spatial Variation in Soil Base Saturation and Exchangeable Cations in Tropical and Subtropical China. Agronomy, 13(3), 781. https://doi.org/10.3390/agronomy13030781
Zhang, J., Wang, Q., Wang, W., & Zhang, X. 2021. The dispersion mechanism of dispersive seasonally frozen soil in western Jilin Province. Bulletin of Engineering Geology and the Environment, 80(7), 5493–5503. https://doi.org/10.1007/s10064-021-02221-6
Zhao, T., Xu, S., & Hao, F. 2023. Differential adsorption of clay minerals: Implications for organic matter enrichment. Earth-Science Reviews, 246, 104598. https://doi.org/10.1016/j.earscirev.2023.104598
Downloads
Published
Issue
Section
License
Copyright (c) 2025 R Ayu Chairunnisya, Retno Purnama Sari, Silfi Indrasari, Retno L Lubis, Yaumil Khairiyah, Khairun Purgawa, Iskandar, Dyah Tjahyandari Suryaningtyas

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.
Authors who publish with this journal agree to the following terms:
1.Authors retain copyright and grant the journal right of first publication with the work simultaneously licensed under a Creative Commons Attribution-NonCommercial 4.0 International License that allows others to share the work with an acknowledgement of the work's authorship and initial publication in this journal.
2.Authors are able to enter into separate, additional contractual arrangements for the non-exclusive distribution of the journal's published version of the work (e.g., post it to an institutional repository or publish it in a book), with an acknowledgement of its initial publication in this journal.
3.Authors are permitted and encouraged to post their work online (e.g., in institutional repositories or on their website) prior to and during the submission process, as it can lead to productive exchanges, as well as earlier and greater citation of published work (See The Effect of Open Access).